CAMBRIDGE INTERNATIONAL EXAMINATIONS **Cambridge International General Certificate of Secondary Education** ## MARK SCHEME for the March 2015 series ## 0620 CHEMISTRY 0620/22 Paper 2 (Core Theory), maximum raw mark 80 This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers. Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers. Cambridge will not enter into discussions about these mark schemes. Cambridge is publishing the mark schemes for the March 2015 series for most Cambridge IGCSE® components. ® IGCSE is the registered trademark of Cambridge International Examinations. | P | age 2 | Mark Scheme | Syllabus | Paper | |---|-----------------|---|----------|------------------| | | | Cambridge IGCSE – March 2015 | 0620 | 22 | | 1 | (a) (i) | С | | [1] | | | (ii) | A | | [1] | | | (iii) | В | | [1] | | | (iv) | С | | [1] | | | (v) | D | | [1] | | | | nas only one type of atom/it cannot be broken down into any other so
chemical means | ubstance | [1]
[6 marks] | | 2 | (a) (i)
(ii) | Any value within the range: 190–490 °C (actual = 337 °C) gas | | [1]
[1] | | | (b) (i) | chlorine + potassium iodide \rightarrow iodine + potassium chloride. | | [2] | | | (ii) | iodine is less reactive than chlorine/chlorine is more reactive than | iodine | [1] | | | (c) (i) | exothermic | | [1] | | | (ii) | sodium (atom) loses an (outer) electron; iodine (atom) gains an (outer) electron note: an electron is transferred from a sodium (atom) to an iodine a scores 2 marks | atom | [1]
[1] | | | | | | [8 marks] | | Page 3 | | Syllabus | Paper | |--------|---|-----------|--------------------------| | | Cambridge IGCSE – March 2015 | 0620 | 22 | | (a) | Any four from: column becomes eroded/column is being eaten away sulfur from burning of fossil fuels (forms) sulfur dioxide/nitrogen dioxide sulfur dioxide/nitrogen dioxide (dissolved in rainwater) to form acid rain/acidic solution formed acid reacts with the limestone/acid decomposes limestone carbon dioxide given off calcium sulfate formed note: marks can be obtained from relevant equations e.g. sulfur + oxygen → sulfur dioxide scores 1 mark sulfur dioxide + water → (sulfurous) acid scores 1 mark calcium carbonate + sulfuric acid → calcium sulfate + water + carbon discores 3 marks | lioxide | [4] | | (b) | Any two from: painting/oiling/covering with plastic/coating with zinc or another (more metal Prevents oxygen (air) and/or water getting to the surface | reactive) | [2] | | | Trevente exygen (an) and or water getting to the earlies | | [.] | | (c) | Any two from: forms coloured compounds forms ions with different charges/variable valency catalytic activity forms complex ions (very) high density | | [2] | | (d) | 26 electrons 32 neutrons electron negatively charged/– proton positively charged/+ | | [1]
[1]
[1] | | (e) | H_2 on right $2(HC1)$ on left (dependent on H_2 or $2H$ on right) | | [1]
[1]
[15 marks] | | (a) | N and P/nitrogen and phosphorus | | [1] | | (b) | (i) burette | | [1] | | - | (ii) allow: any pH value below pH7 | | [1] | 4 Page 3 3 | Р | age 4 | Mark Scheme | Syllabus | Paper | |---|----------------|---|-----------|------------| | | | Cambridge IGCSE – March 2015 | 0620 | 22 | | | (iii) | pH decreases | | [1] | | | (iv) | neutralisation | | [1] | | | (c) 3(N
(3) | IH₃)
H₂O | | [1]
[1] | | | | | | [7 marks] | | 5 | (a) (i) | calcium/Ca ²⁺ | | [1] | | | (ii) | iod <u>ide</u> | | [1] | | | (iii) | calcium and magnesium/Ca ²⁺ and Mg ²⁺ | | [1] | | | (iv) | Any two from: bromide/chloride/iodide/sulfate | | [2] | | | (b) (i) | graphite conducts electricity/graphite is inert/graphite is unreactive |) | [1] | | | (ii) | hydrogen | | [1] | | | (iii) | structure of chlorine completely correct (1 bonding pair of electrons unbonded electrons the right hand chlorine atoms) | and 6 | [2] | | | | ode: brom <u>ine</u>
hode: magnesium | | [1]
[1] | | | | | | [11 marks] | | 6 | (a) so | as not to harm the skin/idea of causing harm or being poisonous | | [1] | | | (b) (i) | removal of oxygen from a compound/gain of electrons/decrease in number | oxidation | [1] | | | (ii) | zinc oxide + carbon \rightarrow zinc + carbon monoxide | | [1] | | | (iii) | poisonous gas formed/carbon monoxide formed | | [1] | | | (c) lea | d < nickel < zinc < magnesium | | [2] | | | (d) wa | ter | | [1] | | | (e) (i) | filtration | | [1] | | P | age : | 5 | | Syllabus | Paper | |---|-------|-------|--|-----------|------------| | | | | Cambridge IGCSE – March 2015 | 0620 | 22 | | | | (ii) | Any three from: evaporate until first crystals seen/heat to crystallisation point/e of some of the water leave to crystallise/leave in a warm place pick out crystals/filter off crystals dry between filter paper | evaporate | [3] | | | | (iii) | zinc carbonate/zinc hydroxide | | [1] | | | (f) | (i) | 64.4 g | | [1] | | | | (ii) | 161 | | [2] | | | | | | | [15 marks] | | 7 | (a) | (i) | X placed in the bottom 'cell' of the column | | [1] | | | | (ii) | naphtha | | [1] | | | | (iii) | waxes/polishes | | [1] | | | (b) | las | t two boxes ticked | | [2] | | | (c) | (i) | Any two from: decomposition/breaking down (of alkanes) of alkanes/hydrocarbons idea of longer chains being converted to shorter chains/larger being converted to smaller molecules alkenes formed/hydrogen formed | molecules | [2] | | | | (ii) | C_3H_6 | | [1] | | | (d) | (i) | structure of ethene correct structure of ethanol correct | | [1]
[1] | | | | (ii) | reversible reaction/equilibrium reaction | | [1] | | | | | | | [11 marks] | | Page 6 | Mark Scheme | Syllabus | Paper | |--------|------------------------------|----------|-------| | | Cambridge IGCSE – March 2015 | 0620 | 22 | ## 8 (a) Any three from: [3] - particles in the crystal separate (in the water)/particles in the crystal dissolve - particles of potassium manganate(VII) become free to move - diffusion - particles move randomly/in any direction/mix with the water - particles collide with water molecules - particles spread out - particles move from where they are in high concentration to where they are in low concentration - **(b)** closeness: close together/touching/tightly packed motion: vibrating/do not move (from place to place) [1] [1] **(c)** X on the base line and solvent level below the base line and above the bottom of the chromatography paper [2] [7 marks]